ÌâÄ¿ÄÚÈÝ
ÉèF1£¬F2·Ö±ðÊÇÍÖÔ²C£º
+
=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã£¬
£¨1£©ÉèÍÖÔ²CÉϵĵ㣨
£¬
£©µ½F1£¬F2Á½µã¾àÀëÖ®ºÍµÈÓÚ4£¬Ð´³öÍÖÔ²CµÄ·½³ÌºÍ½¹µã×ø±ê
£¨2£©ÉèKÊÇ£¨1£©ÖÐËùµÃÍÖÔ²ÉϵĶ¯µã£¬ÇóÏ߶ÎKF1µÄÖеãBµÄ¹ì¼£·½³Ì
£¨3£©ÉèµãPÊÇÍÖÔ²CÉϵÄÈÎÒâÒ»µã£¬¹ýÔµãµÄÖ±ÏßLÓëÍÖÔ²ÏཻÓÚM£¬NÁ½µã£¬µ±Ö±ÏßPM£¬PNµÄбÂʶ¼´æÔÚ£¬²¢¼ÇΪkPM£¬KPNÊÔ̽¾¿kPM•KPNµÄÖµÊÇ·ñÓëµãP¼°Ö±ÏßLÓйأ¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
x2 |
a2 |
y2 |
b2 |
£¨1£©ÉèÍÖÔ²CÉϵĵ㣨
3 |
| ||
2 |
£¨2£©ÉèKÊÇ£¨1£©ÖÐËùµÃÍÖÔ²ÉϵĶ¯µã£¬ÇóÏ߶ÎKF1µÄÖеãBµÄ¹ì¼£·½³Ì
£¨3£©ÉèµãPÊÇÍÖÔ²CÉϵÄÈÎÒâÒ»µã£¬¹ýÔµãµÄÖ±ÏßLÓëÍÖÔ²ÏཻÓÚM£¬NÁ½µã£¬µ±Ö±ÏßPM£¬PNµÄбÂʶ¼´æÔÚ£¬²¢¼ÇΪkPM£¬KPNÊÔ̽¾¿kPM•KPNµÄÖµÊÇ·ñÓëµãP¼°Ö±ÏßLÓйأ¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
£¨1£©ÓÉÓÚµã(
£¬
)ÔÚÍÖÔ²ÉÏ£¬
+
=1
2a=4£¬
ÍÖÔ²CµÄ·½³ÌΪ
+
=1
½¹µã×ø±ê·Ö±ðΪ£¨-1£¬0£©£¬£¨1£¬0£©
£¨2£©ÉèKF1µÄÖеãΪB£¨x£¬y£©ÔòµãK£¨2x+1£¬2y£©
°ÑKµÄ×ø±ê´úÈëÍÖÔ²
+
=1ÖеÃ
+
=1
Ï߶ÎKF1µÄÖеãBµÄ¹ì¼£·½³ÌΪ(x+
)2+
=1
£¨3£©¹ýÔµãµÄÖ±ÏßLÓëÍÖÔ²ÏཻµÄÁ½µãM£¬N¹ØÓÚ×ø±êÔµã¶Ô³Æ
ÉèM£¨x0£¬y0£©N£¨-x0£¬-y0£©£¬p£¨x£¬y£©
M£¬N£¬PÔÚÍÖÔ²ÉÏ£¬Ó¦Âú×ãÍÖÔ²·½³Ì£¬
µÃ
+
=1£¬
+
=1
kPM=
£¬KPN=
kPM•KPN=
•
=
=-
kPM•KPNµÄÖµÓëµãP¼°Ö±ÏßLÎÞ¹Ø
3 |
| ||
2 |
(
| ||
a2 |
(
| ||||
b2 |
2a=4£¬
ÍÖÔ²CµÄ·½³ÌΪ
x2 |
4 |
y2 |
3 |
½¹µã×ø±ê·Ö±ðΪ£¨-1£¬0£©£¬£¨1£¬0£©
£¨2£©ÉèKF1µÄÖеãΪB£¨x£¬y£©ÔòµãK£¨2x+1£¬2y£©
°ÑKµÄ×ø±ê´úÈëÍÖÔ²
x2 |
4 |
y2 |
3 |
(2x+1)2 |
4 |
(2y)2 |
3 |
Ï߶ÎKF1µÄÖеãBµÄ¹ì¼£·½³ÌΪ(x+
1 |
2 |
y2 | ||
|
£¨3£©¹ýÔµãµÄÖ±ÏßLÓëÍÖÔ²ÏཻµÄÁ½µãM£¬N¹ØÓÚ×ø±êÔµã¶Ô³Æ
ÉèM£¨x0£¬y0£©N£¨-x0£¬-y0£©£¬p£¨x£¬y£©
M£¬N£¬PÔÚÍÖÔ²ÉÏ£¬Ó¦Âú×ãÍÖÔ²·½³Ì£¬
µÃ
x02 |
a2 |
y02 |
b2 |
x2 |
a2 |
y2 |
b2 |
kPM=
y-y0 |
x-x0 |
y+y0 |
x+x0 |
kPM•KPN=
y-y0 |
x-x0 |
y+y0 |
x+x0 |
y2-y02 |
x2-x02 |
b2 |
a2 |
kPM•KPNµÄÖµÓëµãP¼°Ö±ÏßLÎÞ¹Ø
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿