题目内容

已知命题p:“?x∈[1,2]都有x2≥a”.命题q:“?x0∈R,使得x02+2ax0+2-a=0成立”,若命题“p∧q”是真命题,则实数a的取值范围为____________.
(-∞,-2]∪{1}
若p是真命题,即a≤(x2)min,x∈[1,2],所以a≤1;若q是真命题,即x02+2ax0+2-a=0有解,则Δ=4a2-4(2-a)≥0,即a≥1或a≤-2.命题“p∧q”是真命题,则p是真命题,q也是真命题,故有a≤-2或a=1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网