题目内容

【题目】已知在△ABC中,角A、B、C的对边分别是a、b、c,且2sin2A+3cos(B+C)=0.

(1)求角A的大小;

(2)若△ABC的面积S=,求sinB+sinC的值.

【答案】(1); (2).

【解析】

(1)根据同角三角函数关系得到2(1﹣cos2A)﹣3cosA=0,解出角A的余弦值,进而得到角A;(2)根据三角形的面积公式和余弦定理得到a=,再结合正弦定理得到最终结果.

(1)∵在△ABC中2sin2A+3cos(B+C)=0,

∴2(1﹣cos2A)﹣3cosA=0,

解得cosA=,或cosA=﹣2(舍去),

∵0<A<π,∴A=

(2)∵△ABC的面积S=bcsinA=bc=5,∴bc=20,

再由c=4可得b=5,故b+c=9,由余弦定理可得:

a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=21,∴a=

∴sinB+sinC

∴sinB+sinC的值是.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网