题目内容

15.设函数f(x)=$\left\{\begin{array}{l}{2{e}^{x-2},x<2}\\{lo{g}_{3}({x}^{2}-1),x≥2}\end{array}\right.$,则f(f(2))=$\frac{2}{e}$.

分析 利用函数的解析式求解函数值即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{2{e}^{x-2},x<2}\\{lo{g}_{3}({x}^{2}-1),x≥2}\end{array}\right.$,
则f(f(2))=f(log33)=f(1)=2e1-2=$\frac{2}{e}$.
故答案为:$\frac{2}{e}$.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网