题目内容

20.f(x)=2$\sqrt{3}$sin(3ωx+$\frac{π}{3}$)(ω>0)
(1)若f(x+θ)是周期为2π的偶函数.求ω及θ值;
(2)在(1)的条件下求函数f(x)在[-$\frac{π}{2}$,$\frac{π}{3}$]的值域.

分析 (1)由条件求得f(x+θ)的解析式,再利用正弦函数周期性和奇偶性,求得ω及θ值.
(2)由x∈[-$\frac{π}{2}$,$\frac{π}{3}$],利用正弦函数的定义域和值域,求得函数f(x)得值域.

解答 解:(1)由于f(x)=2$\sqrt{3}$sin(3ωx+$\frac{π}{3}$),
可得f(x+θ)=2$\sqrt{3}$sin[3ω(x+θ)+$\frac{π}{3}$]=2$\sqrt{3}$sin(3ωx+3ωθ+$\frac{π}{3}$),
再根据f(x+θ)是周期为2π的偶函数,可得$\frac{2π}{3ω}$=2π,3ωθ+$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z.
求得ω=$\frac{1}{3}$,θ=kπ+$\frac{π}{6}$,f(x)=2$\sqrt{3}$sin(x+$\frac{π}{3}$).
(2)由x∈[-$\frac{π}{2}$,$\frac{π}{3}$],可得x+$\frac{π}{3}$∈[-$\frac{π}{6}$,$\frac{2π}{3}$],
故当x+$\frac{π}{3}$=-$\frac{π}{6}$时,f(x)取得最小值为-$\sqrt{3}$,当x+$\frac{π}{3}$=$\frac{π}{2}$时,f(x)取得最大值为2$\sqrt{3}$,
故函数f(x)得值域为[-$\sqrt{3}$,2$\sqrt{3}$].

点评 本题主要考查正弦函数周期性和奇偶性,正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网