题目内容

13.若等差数列{an}的首项为a1=C5m11-2m-A11-3m2m-2(m∈N),公差是${(\frac{5}{2x}-\frac{2}{5}\root{3}{x^2})^n}$展开式中的常数项,其中n为7777-15除以19的余数,求通项公式an

分析 由题意可得$\left\{\begin{array}{l}{5m≥11-2m}\\{11-3m≥2m-2}\end{array}\right.$,解不等式可得m值,进而可得a1,由二项展开式可得n=5,再由二项展开式的通项可得r值,可得通项公式.

解答 解:由题意可得$\left\{\begin{array}{l}{5m≥11-2m}\\{11-3m≥2m-2}\end{array}\right.$,解得$\frac{11}{7}$≤m≤$\frac{13}{5}$,
又∵m∈N,∴m=2,∴${a_1}=C_{10}^7-A_5^2=100$,
又7777-15=${(19×4+1)^{77}}-15=C_{77}^0+C_{77}^1(19×4)+…+C_{77}^{77}{(19×4)^{77}}-15$
=$(19×4)[C_{77}^1+C_{77}^2(19×4)+…+C_{77}^{77}{(19×4)^{76}}]-19+5$
∴7777-15除以19的余数为5,即n=5                    
又${T_{r+1}}=C_5^r{(\frac{5}{2x})^{5-r}}{(-\frac{2}{5}\root{3}{x^2})^r}=C_5^r{(\frac{5}{2})^{5-2r}}{x^{\frac{5r-15}{3}}}{(-1)^r}$,
令5r-15=0可解得r=3,∴$d=C_5^3{(\frac{5}{2})^{5-6}}{(-1)^3}=-4$,
∴an=a1+(n-1)d=104-4n

点评 本题考查二项式定理,涉及等差数列的通项公式和排列组合数的性质,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网