题目内容
【题目】已知圆经过点, ,并且直线平分圆.
(1)求圆的方程;
(2)若直线与圆交于两点,是否存在直线,使得(为坐标原点),若存在,求出的值;若不存在,请说明理由.
【答案】(1) ;(2) 不存在直线.
【解析】试题分析: (1)由弦的中垂线必过圆心,所以求出线段的中垂线,与3x-2y=0的交点即为圆心,由两点间距离公式求圆的半径.(2) 设,由向量的数量积坐标表示可知,直线与圆组方程组,利用韦达代入上式,可求得k,同时检验判别式.
试题解析:(1)线段的中点,,
故线段的中垂线方程为,即.
因为圆经过两点,故圆心在线段的中垂线上.
又因为直线:平分圆,所以直线经过圆心.
由 解得,即圆心的坐标为,
而圆的半径,
所以圆的方程为:
(2)设,
将代入方程,得,
即 ,
由,得,
所以,.
又因为
所以
,解得或
此时式中,没有实根,与直线与交于两点相矛盾,
所以不存在直线,使得.
练习册系列答案
相关题目