ÌâÄ¿ÄÚÈÝ
2£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÄÚ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=2-\frac{3}{5}t\\ y=\frac{4}{5}\end{array}\right.£¨t$Ϊ²ÎÊý£©£®ÒÔOΪ¼«µã¡¢xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£®£¨¢ñ£©½«ÇúÏßCµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlÓëxÖá½»ÓÚµãM£¬µãNÔÚÇúÏßCÉÏ£¬ÇóM£¬NÁ½µã¼ä¾àÀë|MN|µÄ×îСֵ£®
·ÖÎö £¨¢ñ£©ÓɦÑ2=2¦Ñsin¦È£¬ÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©Ö±ÏßlÓëxÖá½»ÓÚµãM£¨2£¬0£©£¬ÇúÏßCÊÇÔ²ÐÄΪC£¨0£¬1£©£¬°ë¾¶r=1µÄÔ²£¬´Ó¶øÄÜÇó³ö|MC|=$\sqrt{5}$£¬M£¬NÁ½µã¼ä¾àÀë|MN|µÄ×îСֵΪ|MC|-r£®
½â´ð ½â£º£¨¢ñ£©¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£¬
¡à¦Ñ2=2¦Ñsin¦È£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=2y£¬¼´x2+£¨y-1£©2=1£®
£¨¢ò£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=2-\frac{3}{5}t\\ y=\frac{4}{5}\end{array}\right.£¨t$Ϊ²ÎÊý£©£¬
¡àÖ±ÏßlÓëxÖá½»ÓÚµãM£¨2£¬0£©£¬
ÇúÏßCÊÇÔ²ÐÄΪC£¨0£¬1£©£¬°ë¾¶r=1µÄÔ²£¬
|MC|=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$£¬
¡ßµãNÔÚÇúÏßCÉÏ£¬
¡àM£¬NÁ½µã¼ä¾àÀë|MN|µÄ×îСֵΪ£º|MC|-r=$\sqrt{5}-1$£®
µãÆÀ ±¾Ì⿼²é¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²éÁ½µã¼ä¾àÀëµÄ×îСֵµÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÁ½µã¼ä¾àÀ빫ʽµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
19£®ÏÂÁÐÃüÌâÖв»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£® | logab•logbc•logca=1£¨a£¬b£¬c¾ùΪ²»µÈÓÚ1µÄÕýÊý£© | |
B£® | Èôxlog34=1£¬Ôò${4^x}+{4^{-x}}=\frac{10}{3}$ | |
C£® | º¯Êýf£¨x£©=lnxÂú×ãf£¨a+b£©=f£¨a£©•f£¨b£©£¨a£¬b£¾0£© | |
D£® | º¯Êýf£¨x£©=lnxÂú×ãf£¨a•b£©=f£¨a£©+f£¨b£©£¨a£¬b£¾0£© |
14£®ÔÚ¼«×ø±êϵÏ£¬¹ýÖ±ÏߦÑcos¦È+¦Ñsin¦È=2$\sqrt{2}$ÉÏÈÎÒâÒ»µãM£¬×÷ÇúÏߦÑ=1µÄÁ½ÌõÇÐÏߣ¬ÔòÕâÁ½ÌõÇÐÏߵļнǵÄ×î´óֵΪ£¨¡¡¡¡£©
A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{3}$ | C£® | $\frac{¦Ð}{2}$ | D£® | $\frac{2¦Ð}{3}$ |