题目内容
【题目】如图,四棱锥的底面是正方形, 平面,,点是上的点,且 .
(1)求证:对任意的 ,都有.
(2)设二面角C-AE-D的大小为 ,直线BE与平面所成的角为 ,
若,求的值.
【答案】(1)见解析; (2).
【解析】
(1)因为SD⊥平面ABCD,BD是BE在平面ABCD上的射影,由三垂线定理只要证AC
⊥BD即可.(2)先找出θ计算出cosθ,再找到,求出点O到BE的距离,再求出sin,解
方程得到的值.
(1)证明:连接BE、BD,由底面ABCD是正方形可得AC⊥BD.
∵SD⊥平面ABCD,∴BD是BE在平面ABCD上的射影,∴AC⊥BE
(2)解:由SD⊥平面ABCD知,∠DBE=φ,
∵SD⊥平面ABCD,CD平面ABCD,∴SD⊥CD.
又底面ABCD是正方形,∴CD⊥AD,而SD∩AD=D,CD⊥平面SAD.
连接AE、CE,过点D在平面SAD内作DF⊥AE于F,连接CF,则CF⊥AE,
故∠CFD是二面角C﹣AE﹣D的平面角,即∠CFD=θ.
在Rt△ADE中,∵AD=a,DE=λa∴AE=a
从而DF==
在Rt△CDF中,tanθ==,所以.
过点B作EO的垂线BG,因为AC⊥平面BDE,所以AC⊥BG,
所以∠BEO就是直线BE与平面所成的角,
设点O到BE的距离为h,则由等面积得
所以,
因为,
所以.
练习册系列答案
相关题目