题目内容

14.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,将函数g(x)=f(x)-x-1的零点按从小到大的顺序排列,构成数列{an},则该数列的通项公式为(  )
A.an=n-2B.an=nC.an=n(n-1)D.an=2n-2

分析 根据函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,h(x)=x+1,画出图象,得出等差数列即可得出数列通项公式.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,
h(x)=x+1,f(x)=f(x-1),x>0,函数的周期为1,函数值增加1,
如图:

根据f(x)与y=x+1的交点判断函数g(x)=f(x)-x-1的零点,
a1=-1,a2=0,a3=1,
通过图象可判断{an}为等差数列
得出:an=n-2,
故选;A.

点评 本题考查了函数的零点,与函数图象的交点问题,属于运用图象,结合等差数列的知识综合参考的题目,关键是运用分段函数画出图象即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网