题目内容
14.已知方程组$\left\{\begin{array}{l}{lo{g}_{81}x+lo{g}_{64}y=4}\\{lo{g}_{x}81-lo{g}_{y}64=1}\end{array}\right.$的解为$\left\{\begin{array}{l}{x={x}_{1}}\\{y={y}_{1}}\end{array}\right.$和$\left\{\begin{array}{l}{x={x}_{2}}\\{y={y}_{2}}\end{array}\right.$,则log18(x1x2y1y2)=12.分析 设log81x=a,log64y=b.可得$\left\{\begin{array}{l}{a+b=4}\\{\frac{1}{a}-\frac{1}{b}=1}\end{array}\right.$,化为a2-6a+4=0,利用根与系数的关系可得:x1x2=816,同理可得y1y2=642.代入即可得出.
解答 解:设log81x=a,log64y=b.
则$\left\{\begin{array}{l}{a+b=4}\\{\frac{1}{a}-\frac{1}{b}=1}\end{array}\right.$,化为a2-6a+4=0,
∴a1+a2=log81(x1x2)=6,∴x1x2=816,
同理可得y1y2=642.
∴log18(x1x2y1y2)=$lo{g}_{18}(8{1}^{6}×6{4}^{2})$=12.
故答案为:12.
点评 本题考查了对数的运算法则、指数式与对数式的互化、换元法,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
14.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,将函数g(x)=f(x)-x-1的零点按从小到大的顺序排列,构成数列{an},则该数列的通项公式为( )
A. | an=n-2 | B. | an=n | C. | an=n(n-1) | D. | an=2n-2 |