题目内容
【题目】某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的1000名群众中随机抽取n名群众,按他们的年龄分组:第1组,第2组,第3组,第4组,第5组,其中第1组有6人,得到的频率分布直方图如图所示.
(1)求m,n的值,并估计抽取的n名群众中年龄在的人数;
(2)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女生的概率.
【答案】(1),,年龄在的人数为(2)
【解析】
(1)根据第一组的频数和频率可得,由所有频率和为1可得,再求得间的频率后可得人数;
(2)把第一组人数编号,如男性为,女性为,然后用列举法写出任取3人的所有基本事件及至少有两名女生的基本事件,计数后可得所求概率.
(1),
设第2组的频率为f,
,
所以,
第3组和第4组的频率为,
年龄在的人数为;
(2)记第1组中的男性为,女性为,
随机抽取3名群众的基本事件是:,
,
共20种;
其中至少有两名女性的基本事件是:共16种.
所以至少有两名女性的概率为.
【题目】在十九大“建设美丽中国”的号召下,某省级生态农业示范县大力实施绿色生产方案,对某种农产品的生产方式分别进行了甲、乙两种方案的改良。为了检查甲、乙两种方案的改良效果,随机在这两种方案中各任意抽取了40件产品作为样本逐件称出它们的重量(单位:克),重量值落在之间的产品为合格品,否则为不合格品。下表是甲、乙两种方案样本频数分布表。
产品重量 | 甲方案频数 | 乙方案频数 |
6 | 2 | |
8 | 12 | |
14 | 18 | |
8 | 6 | |
4 | 2 |
(1)根据上表数据求甲(同组中的重量值用组中点数值代替)方案样本中40件产品的平均数和中位数
(2)由以上统计数据完成下面列联表,并回答有多大把握认为“产品是否为合格品与改良方案的选择有关”.
甲方案 | 乙方案 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
参考公式:,其中.
临界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.814 | 5.024 | 6.635 | 10.828 |