题目内容
【题目】已知a∈R,若 在区间(0,1)上只有一个极值点,则a的取值范围为 .
【答案】a>0
【解析】解:∵f(x)=(x+ )ex , ∴f′(x)=( )ex ,
设h(x)=x3+x2+ax﹣a,
∴h′(x)=3x2+2x+a,
a>0,h′(x)>0在(0,1)上恒成立,即函数h(x)在(0,1)上为增函数,
∵h(0)=﹣a<0,h(1)=2>0,
∴h(x)在(0,1)上有且只有一个零点x0 , 使得f′(x0)=0,
且在(0,x0)上,f′(x)<0,在(x0 , 1)上,f′(x)>0,
∴x0为函数f(x)在(0,1)上唯一的极小值点;
a=0时,x∈(0,1),h′(x)=3x2+2x>0成立,函数h(x)在(0,1)上为增函数,
此时h(0)=0,∴h(x)>0在(0,1)上恒成立,
即f′(x)>0,函数f(x)在(0,1)上为单调增函数,函数f(x)在(0,1)上无极值;
a<0时,h(x)=x3+x2+a(x﹣1),
∵x∈(0,1),∴h(x)>0在(0,1)上恒成立,
即f′(x)>0,函数f(x)在(0,1)上为单调增函数,函数f(x)在(0,1)上无极值.
综上所述,a>0,所以答案是:a>0.
【考点精析】解答此题的关键在于理解函数的极值与导数的相关知识,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.
练习册系列答案
相关题目