题目内容
【题目】如图,已知为椭圆: 的右焦点, , , 为椭圆的下、上、右三个顶点, 与的面积之比为.
(1)求椭圆的标准方程;
(2)试探究在椭圆上是否存在不同于点, 的一点满足下列条件:点在轴上的投影为, 的中点为,直线交直线于点, 的中点为,且的面积为.若不存在,请说明理由;若存在,求出点的坐标.
【答案】(1) .(2)存在满足条件的点,其坐标为.
【解析】试题分析:
(1)由与的面积之比为可得,又,所以,从而,可得椭圆的标准方程。(2)假设存在满足条件的点(),进而, 。可得直线的方程为,进一步可得,根据,可得,从而得到。又点到直线的距离为,由,可得,从而。因此存在点P满足条件。
试题解析:
(1)由已知得.
又,
∴,
∴,
∴椭圆的标准方程为.
(2)假设存在满足条件的点P,设其坐标为(),
则,且.
又,
∴直线的方程为.
∵,∴,
令,得.
又,则,
∴.
直线的方程为,即,
∴点到直线的距离为,
∴,
解得,
又,
∴,
∴存在满足条件的点,其坐标为.
【题目】某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:
记某企业每天由空气污染造成的经济损失T(单位:元),空气质量指数API为.在区间[0,100]对企业没有造成经济损失;在区间(100,300]对企业造成经济损失成直线模型(当API为150时造成的经济损失为200元,当API为200时,造成的经济损失为400元);当API大于300时造成的经济损失为2000元.
(1)试写出函数T()的表达式:
(2)试估计在本年内随机抽取一天,该天经济损失大于200元且不超过600元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关.
非重度污染 | 重度污染 | 合计 | |
供暖季 | |||
非供暖季 | |||
合计 | 100 |
附:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】近年来许多地市空气污染较为严重,现随机抽取某市一年(365天)内100天的空气质量指数()的监测数据,统计结果如表:
指数 | ||||||
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
天数 | 4 | 13 | 18 | 30 | 20 | 15 |
记某企业每天由空气污染造成的经济损失为(单位:元),指数为.当在区间内时,对企业没有造成经济损失;当在区间内时,对企业造成的经济损失与成直线模型(当指数为150时,造成的经济损失为1100元,当指数为200时,造成的经济损失为1400元);当指数大于300时,造成的经济损失为2000元.
(1)试写出的表达式;
(2)试估计在本年内随机抽取1天,该天经济损失大于1100且不超过1700元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,这30天中有8天为严重污染,完成列联表,并判断是否有的把握认为该市本年度空气严重污染与供暖有关?
非严重污染 | 严重污染 | 合计 | |
供暖季 | |||
非供暖季 | |||
合计 |
附:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中