题目内容
【题目】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点在圆周上, 在边上,且,设.
(1)记游泳池及其附属设施的占地面积为,求的表达式;
(2)当为何值时,能符合园林局的要求?
【答案】(1);(2)
【解析】试题分析:(1)由已知分别用θ表示两个矩形的长和宽, 可得f(θ)的表达式;(2)要符合园林局的要求,只要f(θ)最小,求导,利用导数法分析当时, , 是单调减函数,当时, , 是单调增函数,所以当时, 取得最小值即可得答案.
试题解析:
(1)由题意, ,且为等边三角形,
所以, ,
,
(2)要符合园林局的要求,只要最小,
由(1知,
令,即,解得或(舍去),
令
当时, , 是单调减函数,当时, , 是单调增函数,所以当时, 取得最小值.
答:当满足时,符合园林局要求.
练习册系列答案
相关题目