题目内容
【题目】已知函数在区间上有且仅有2个零点,对于下列4个结论:①在区间上存在,满足;②在区间有且仅有1个最大值点;③在区间上单调递增;④的取值范围是,其中所有正确结论的编号是( )
A.①③B.①③④C.②③D.①④
【答案】B
【解析】
对①,,则为最大值减最小值,需要找到在上是否存在最大值和最小值;对②,对应的值有可能在上;对④,由在区间上有且仅有2个根,得,求出的范围;对③,由的范围,确定的范围,进而确定的单调性.
,
,
令,则,
由题意在上只能有两解和,
,(*)
因为上必有,
故在上存在满足,①成立;
开对应的(显然在上)一定是最大值点,
因对应的值有可能在上,故②结论错误;
解(*)得,所以④成立;
当时,,
由于,
故,
此时是增函数,从而在上单调递增. 所以③成立
综上,①③④成立,
故选:B.
练习册系列答案
相关题目
【题目】“互联网”是“智慧城市”的重要内士,市在智慧城市的建设中,为方便市民使用互联网,在主城区覆盖了免费.为了解免费在市的使用情况,调査机构借助网络进行了问卷调查,并从参与调査的网友中抽取了人进行抽样分析,得到如下列联表(单位:人):
经常使用免费WiFi | 偶尔或不用免费WiFi | 合计 | |
45岁及以下 | 70 | 30 | 100 |
45岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,判断是否有的把握认为市使用免费的情况与年龄有关;
(2)将频率视为概率,现从该市岁以上的市民中用随机抽样的方法每次抽取人,共抽取次.记被抽取的人中“偶尔或不用免费”的人数为,若每次抽取的结果是相互独立的,求的分布列,数学期望和方差.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |