题目内容
【题目】在直角坐标系中,曲线,曲线(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系.
(1)求的极坐标方程;
(2)射线的极坐标方程为,若分别与交于异于极点的两点,求的最大值.
【答案】(1)的极坐标方程是,的极坐标方程是. (2)
【解析】
(1)利用将的直角坐标方程化为极坐标方程;先把的参数方程化为普通方程,再化为极坐标方程;
(2)分别联立曲线与的极坐标方程与,即可求得,,再利用二次函数的性质求得的最大值,进而求解.
解:(1)因为,
所以可化为,
整理得,
(为参数),则(为参数),化为普通方程为,则极坐标方程为,即.
所以的极坐标方程是,的极坐标方程是.
(2)由(1)知,
联立可得,
联立可得,
所以,
当时,最大值为,所以的最大值为.
练习册系列答案
相关题目
【题目】某科研团队对例新冠肺炎确诊患者的临床特征进行了回顾性分析.其中名吸烟患者中,重症人数为人,重症比例约为;名非吸烟患者中,重症人数为人,重症比例为.根据以上数据绘制列联表,如下:
吸烟人数 | 非吸烟人数 | 总计 | |
重症人数 | 30 | 120 | 150 |
轻症人数 | 100 | 800 | 900 |
总计 | 130 | 920 | 1050 |
(1)根据列联表数据,能否在犯错误的概率不超过的前提下认为新冠肺炎重症和吸烟有关?
(2)已知每例重症患者平均治疗费用约为万元,每例轻症患者平均治疗费用约为万元.现有吸烟确诊患者20人,记这名患者的治疗费用总和为,求.
附:
≥ | |||