题目内容
【题目】在公比大于0的等比数列{an}中,已知a3a5=a4,且a2,3a4,a3成等差数列.
(1)求{an}的通项公式;
(2)已知Sn=a1a2…an,试问当n为何值时,Sn取得最大值,并求Sn的最大值.
【答案】(1)an=24﹣n,n∈N*;(2)当n=3或4时,Sn取得最大值64.
【解析】
(1)设{an}的公比为q,(q>0),运用等比数列的通项公式和等差数列的中项性质,解方程可得首项和公比,即可得到所求通项公式;
(2)由等比数列的通项公式和等差数列的求和公式,可得Sn,结合二次函数的最值求法,可得所求最大值和n的值.
(1)设{an}的公比为,
由a3a5=a42=a4,可得a4=1,即a1q3=1,
因为a2,3a4,a3成等差数列,所以a2+a3=6a4,即a1q+a1q2=6a1q3,即6q2﹣q﹣1=0,
解得或(舍去),所以a1=8,
所以.
(2)由(1)知,
所以,
又由,
所以当或时,取得最大值,最大值为.
【题目】2019年春节前后,中国爆发新型冠状病毒(SARS-Cov-2)如图所示为1月24日至2月16日中国内地(除湖北以外的)感染新型冠状病毒新增人数的折线图,为了预测分析数据的变化规律,建立了与时间变量的不同时间段的两个线性回归模型.根据1月24日至2月3日的数据(时间变量的值依次为1,2,3,4,5,6,7,8,9,10,11)建立模型①:;根据2月4日至2月16日的数据(时间变量的值依次为12,13,14,15,16,17,18,19,20,21,22,23,24)建立模型②:.
1月 24日 | 1月 25日 | 1月 26日 | 1月 27日 | 1月 28日 | 1月 29日 | 1月 30日 | 1月 31日 | 2月 1日 | 2月 2日 | 2月 3日 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
332 | 174 | 298 | 337 | 448 | 593 | 690 | 737 | 720 | 648 | 926 |
2月 4日 | 2月 5日 | 2月 6日 | 2月 7日 | 2月 8日 | 2月 9日 | 2月 10日 | 2月 11日 | 2月 12日 | 2月 13日 | 2月 14日 | 2月 15日 | 2月 16日 |
12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
830 | 741 | 693 | 683 | 559 | 464 | 431 | 377 | 377 | 299 | 259 | 211 | 160 |
(1)求出两个回归直线方程;(计算结果取整数)
(2)中国政府为了人民的生命安全,听取专家意见,了解了病毒信息,并迅速做出一系列的隔离防护措施,但新冠状病毒在世界范围内爆发时,某些欧美国家采取放任的态度,不治疗、不隔离、不检测,甚至不公布,请你用以上数据说明采取一系列措施的必要性,不采取措施的后果.
参考数据:,,,
参考公式:.