搜索
题目内容
如图,在△ABC中,∠CAB=∠CBA=30°,AC、BC边上的高分别为BD、AE,则以A、B为焦点,且过D、E的椭圆与双曲线的离心率分别为
,则
.
试题答案
相关练习册答案
试题分析:设
,则椭圆中
,
,双曲线中
,
,
点评:求离心率主要需要找关于
的关系式,本题中利用椭圆和双曲线的定义分别求出
的关系,从而求得
练习册系列答案
名校课堂系列答案
西城学科专项测试系列答案
小考必做系列答案
小考实战系列答案
小考复习精要系列答案
小考总动员系列答案
小升初必备冲刺48天系列答案
68所名校图书小升初高分夺冠真卷系列答案
伴你成长周周练月月测系列答案
小升初金卷导练系列答案
相关题目
已知椭圆
过点
,其长轴、焦距和短轴的长的平方依次成等差数列.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与
轴正半轴、
轴分别交于点
,与椭圆分别交于点
,各点均不重合,且满足
,
. 当
时,试证明直线过定点.过定点(1,0)
已知椭圆C的中心在原点,焦点在x轴上,离心率为
,短轴长为4
.
(I)求椭圆C的标准方程;
(II)直线x=2与椭圆C交于P、Q两点,A、B是椭圆O上位于直线PQ两侧的动点,且直线AB的斜率为
.
①求四边形APBQ面积的最大值;
②设直线PA的斜率为
,直线PB的斜率为
,判断
+
的值是否为常数,并说明理由.
抛物线
的焦点坐标是 ( )
A.(0,2)
B.(0,-2)
C.(4,0)
D.(-4,0)
已知
分别是椭圆
的左右焦点,过
与
轴垂直的直线交椭圆于
两点,若
是锐角三角形,则椭圆离心率的范围是( )
A.
B.
C.
D.
已知椭圆
的中心在坐标原点,焦点在
轴上,其左、右焦点分别为
、
,短轴长为
,点
在椭圆
上,且满足
的周长为6.
(Ⅰ)求椭圆
的方程;;
(Ⅱ)设过点
的直线与椭圆相交于A、B两点,试问在x轴上是否存在一个定点M使
恒为定值?若存在求出该定值及点M的坐标,若不存在请说明理由.
曲线C:
,(
为参数)的普通方程为 ( )
A.
B.
C.
D.
在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
.
(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为
,判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最值;
(Ⅲ)请问是否存在直线
,
∥l且
与曲线C的交点A、B满足
;
若存在请求出满足题意的所有直线方程,若不存在请说明理由。
抛物线
的焦点为F,点
为该抛物线上的动点,又点
则
的最小值是
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总