题目内容
已知椭圆
过点
,其长轴、焦距和短轴的长的平方依次成等差数列.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与
轴正半轴、
轴分别交于点
,与椭圆分别交于点
,各点均不重合,且满足
,
. 当
时,试证明直线过定点.过定点(1,0)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240141032261085.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103320428.png)
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103351266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103398310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103413424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103444550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103460758.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103491740.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103522581.png)
(1)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103538650.png)
(2)结合向量关系式,以及韦达定理,来分析直线的方程,进而得到定点坐标。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103538650.png)
(2)结合向量关系式,以及韦达定理,来分析直线的方程,进而得到定点坐标。
试题分析:解:(Ⅰ)设椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240141032261085.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103585325.png)
由题意知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103600353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103616854.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103647721.png)
所以椭圆方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103538650.png)
(Ⅱ)由题意设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240141037411516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103772659.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103460758.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240141038031331.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103819956.png)
同理由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103491740.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103866717.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103522581.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014103897820.png)
联立
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240141039281087.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240141039441067.png)
只需
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240141039751131.png)
且有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240141039901244.png)
把(3)代入(1)得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014104022999.png)
依题意,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014104037483.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014104068458.png)
从而的方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014104084495.png)
点评:主要是考查了直线与椭圆的位置关系的运用,代数法来设而不求的解题思想是解析几何的本质,属于中档题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目