题目内容

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的方程为,曲线为参数,),在以原点为极点,轴正半轴为极轴的极坐标系中,曲线.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线有公共点,且直线与曲线的交点恰好在曲线轴围成的区域(不含边界)内,求的取值范围.

【答案】(1);(2)

【解析】

(1)消去参数,即可得到曲线的普通方程,根据极坐标与直角坐标的互化公式,即可化简得到曲线的直角坐标方程.

(2)根据直线与曲线有公共点,解得,再联立方程组,求得点的坐标,根据点在曲线内,列出不等式组,即可求解。

(1)曲线的普通方程为

曲线的直角坐标方程为.

(2)直线与曲线有公共点,则圆心到直线的距离为

,解得.

,得,即

又点在曲线内,所以,解得.

综上,的取值范围为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网