题目内容
已知函数
在
处有极大值
.
(1)求
的解析式;
(2)求
的单调区间;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650053913.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650069332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650084254.png)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650100447.png)
(2)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650100447.png)
(1)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650131810.png)
(2)单调递增区间为
,
;单调递减区间为![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650178484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650131810.png)
(2)单调递增区间为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650147519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650162552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650178484.png)
试题分析:(1)先对函数求导,根据函数在x=-1处有极大值7,得到函数在-1处的导数为0,且此处的函数值是7,列出关于字母系数的方程组,解方程组即可.
(2)根据上一问做出来的函数的解析式,是函数的导函数分别大于零和小于零,解出对应的不等式的解集,就是我们要求的函数的单调区间.
试题解析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650194893.png)
由已知可知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650209905.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240426502251063.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650225711.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650131810.png)
(2)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240426502561063.png)
可知:当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650272619.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650303561.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650303590.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650318544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650334642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650303561.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650100447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650147519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650162552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042650178484.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目