题目内容

圆内接四边形ABCD中,cosA+cosB+cosC+cosD等于(  )
A、0B、4C、2D、不确定
考点:圆內接多边形的性质与判定
专题:直线与圆
分析:根据圆内接四边形的性质,得A+C=B+D=180°,结合诱导公式得到cosB与cosD互为相反数,且cosA与cosC互为相反数,由此能求出结果.
解答:解:∵四边形ABCD为圆内接四边形
∴A+C=B+D=180°,
∴cosB=-cosD,cosA=-cosC,
可得cosA+cosB+cosC+cosD
=(cosA+cosC)+(cosB+cosD)=0
故选:A.
点评:本题求圆内接四边形的四个内角的余弦之和.着重考查了圆内接四边形的性质、三角函数的诱导公式等知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网