题目内容
【题目】已知cos(75°+α)=,α是第三象限角,
(1)求sin(75°+α) 的值.
(2)求cos(α-15°) 的值.
(3)求sin(195°-α)+cos(105o-α)的值.
【答案】(1)-;(2)-; (3).
【解析】
试题分析:
(1)由题意可得是第四象限角,结合同角三角函数基本关系可得;
(2)利用诱导公式和(1)的结论可得cos(α-15°) 的值为
(3)由题意结合诱导公式可得:sin(195°-α) +cos(105o-α)=-sin[90°-(75°+α)] -cos(75°+α).
试题解析:
(1)∵cos(75°+α)=>0,α是第三象限角,
∴75°+α是第四象限角,
且sin(75°+α)=
(2)cos(α-15°)= cos[90°-(75°+α)]= sin(75°+α)= -
(3)sin(195°-α) +cos(105o-α)
=sin[180°+(15°-α)]+cos[180o o-(75°+α)]
=-sin(15°-α) -cos(75°+α)
=-sin[90°-(75°+α)] -cos(75°+α)
=-2cos(75°+α)=.
【题目】汽车是碳排放量比较大的交通工具,某地规定,从2017年开始,将对二氧化碳排放量超过130 g/km的轻型汽车进行惩罚性征税,检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km):
甲 | 80 | 110 | 120 | 140 | 150 |
乙 | 100 | 120 | x | 100 | 160 |
经测算得乙品牌轻型汽车二氧化碳排放量的平均值为=120 g/km.
(1)求表中x的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性;
(2)从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过130 g/km的概率是多少?