题目内容
【题目】如图,在三棱锥中,,二面角的大小为120°,点在棱上,且,点为的重心.
(1)证明:平面;
(2)求二面角的正弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)连接,并延长与相交于点,连接,可证得,从而得证;
(2)过点在中作,与相交于点,可得,以点为坐标原点,所在直线为轴,所在直线为轴,建立如图所示的空间直角坐标系,分别求平面的法向量和平面的一个法向量为,再求得,进而利用同角三角函数关系即可得解.
(1)证明:连接,并延长与相交于点,连接,
因为点为的重心,所以,
在中,有,
所以,
则平面,平面,
所以平面;
(2)解:过点在中作,与相交于点,因为,,则为二面角的平面角,则。
以点为坐标原点,所在直线为轴,所在直线为轴,建立如图所示的空间直角坐标系,
因为,,,则,,,,
所以
记平面的法向量,
则
令,得到平面的一个法向量,
设平面的一个法向量为,
则,
令,得到平面的一个法向量,
,
设二面角的平面角为,则,
即二面角的正弦值为.
练习册系列答案
相关题目
【题目】某工厂生产某种型号的电视机零配件,为了预测今年月份该型号电视机零配件的市场需求量,以合理安排生产,工厂对本年度月份至月份该型号电视机零配件的销售量及销售单价进行了调查,销售单价(单位:元)和销售量(单位:千件)之间的组数据如下表所示:
月份 | ||||||
销售单价(元) | ||||||
销售量(千件) |
(1)根据1至月份的数据,求关于的线性回归方程(系数精确到);
(2)结合(1)中的线性回归方程,假设该型号电视机零配件的生产成本为每件元,那么工厂如何制定月份的销售单价,才能使该月利润达到最大(计算结果精确到)?
参考公式:回归直线方程,其中.
参考数据:.