题目内容
【题目】已知点为圆的圆心, 是圆上动点,点在圆的半径上,且有点和上的点,满足
(1)当在圆上运动时,求点的轨迹方程;
(2)若斜率为的直线与圆相切,与(1)中所求点的轨迹教育不同的两点 是坐标原点,且时,求的取值范围.
【答案】(1)(2)或
【解析】试题分析:(1)中线段的垂直平分线,所以,所以点的轨迹是以点为焦点,焦距为2,长轴为的椭圆,从而可得椭圆方程;(2)设直线,直线与圆相切,可得直线方程与椭圆方程联立可得: ,可得,再利用数量积运算性质、根与系数的关系及其即可解出的范围.
试题解析:(1)由题意知中线段的垂直平分线,所以
所以点的轨迹是以点为焦点,焦距为2,长轴为的椭圆,
故点的轨迹方程式
(2)设直线
直线与圆相切
联立
所以或为所求.