题目内容
【题目】(题文)已知函数,其中为正实数.
(1)若函数在处的切线斜率为2,求的值;
(2)求函数的单调区间;
(3)若函数有两个极值点,求证:
【答案】(1)1;(2)见解析;(3)见解析
【解析】试题分析:(1)根据导数几何意义得,解得的值;(2)先求导数,再根据导函数是否变号分类讨论,最后根据导函数符号确定单调区间(3)先根据韦达定理得,再化简,进而化简所证不等式为,最后利用导函数求函数单调性,进而确定最小值,证得结论
试题解析:(1)因为,所以,
则,所以的值为1.
(2) ,函数的定义域为,
若,即,则,此时的单调减区间为;
若,即,则的两根为,
此时的单调减区间为,,
单调减区间为.
(3)由(2)知,当时,函数有两个极值点,且.
因为
要证,只需证.
构造函数,则,
在上单调递增,又,且在定义域上不间断,
由零点存在定理,可知在上唯一实根, 且.
则在上递减, 上递增,所以的最小值为.
因为,
当时, ,则,所以恒成立.
所以,所以,得证.
练习册系列答案
相关题目