题目内容

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,点的极坐标为,直线的极坐标方程为,且过点,曲线的参数方程为 (为参数).

(Ⅰ)求曲线上的点到直线的距离的最大值;

(Ⅱ)过点与直线平行的直线与曲线 交于两点,求的值.

【答案】(Ⅰ);(Ⅱ) .

【解析】试题分析:(1)由直角坐标与极坐标互换公式,可得直线的直角坐标方程为,再由点到直线的距离公式及辅助角公式可求得最值。(2)直线的参数方程为为参数),代入曲线的普通方程为.由参数t的几何意义可得

试题解析:(Ⅰ)由直线过点可得,故

则易得直线的直角坐标方程为

根据点到直线的距离方程可得曲线上的点到直线的距离

(Ⅱ)由(1)知直线的倾斜角为

则直线的参数方程为为参数).

又易知曲线的普通方程为.

把直线的参数方程代入曲线的普通方程可得

,依据参数的几何意义可知.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网