题目内容
设A={x|x2-2x-8≤0},B{x|(x-m)[x-(m-3)]≤0,(m∈R)}.
(1)若A∩B=[2,4],求实数m的值.
(2)若A⊆∁RB,求实数m的取值范围.
(1)若A∩B=[2,4],求实数m的值.
(2)若A⊆∁RB,求实数m的取值范围.
(1)A={x|-2≤x≤4},B={x|m-3≤x≤m},
∵A∩B=[2,4],
∴
,∴m=5.
(2)A={x|-2≤x≤4},B={x|m-3≤x≤m},
CRB={x|x<m-3或x>m},
∵A⊆CRB,
∴4<m-3,或m<-2,
所以m∈(-∞,-2)∪(7,+∞).
∵A∩B=[2,4],
∴
|
(2)A={x|-2≤x≤4},B={x|m-3≤x≤m},
CRB={x|x<m-3或x>m},
∵A⊆CRB,
∴4<m-3,或m<-2,
所以m∈(-∞,-2)∪(7,+∞).
练习册系列答案
相关题目