题目内容

【题目】在数列{an}中,a1=1,3anan1+an﹣an1=0(n≥2).
(1)求证:数列{ }等差数列;
(2)数列bn=anan+1 , 求数列bn的前n项和.

【答案】
(1)解:因为3anan1+an﹣an1=0(n≥2),

整数,得 =3(n≥2),

所以数列{ }是以1为首项,3为公差的等差数列


(2)解:由(1)可得 =1+3(n﹣1)=3n﹣2,

所以an= .

=


【解析】(1)利用3anan1+an﹣an1=0(n≥2),转化为: =3(n≥2)即可证明数列{ }是等差数列.(2)求出an , 推出bn , 利用裂项法求解数列的和即可.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网