题目内容
【题目】已知函数为定义在上的奇函数,且当时,
(Ⅰ)求函数的解析式;
(Ⅱ)求函数在区间 上的最小值.
【答案】(Ⅰ)(Ⅱ)见解析
【解析】
(Ⅰ)利用奇函数的定义即可求函数f(x)的解析式.(Ⅱ)根据函数的解析式,先画出图象,然后对a(要考虑函数的解析式及单调性)进行分类讨论即可求出函数的值域.
(Ⅰ)当x>0时,,又f(x)为奇函数,
则当x<0时,f(x)=-f(-x)=-(-x2-4x)=x2+4x,又f(0)=0
故f(x)解析式为
(Ⅱ)根据函数解析式画出函数f(x)的图像,可得f(-2)=-4,当x>0时,由f(x)=-4,解得x=2+2
① 当-2<a≤2+2时,观察图像可得函数最小值为f(-2)=-4
② 当a>2+2时,函数在[-2,2]上单调递增,在[2,a]是单调递减,由图像可得函数的最小值为f(a)=
综上所述:当-2<a≤2+2,最小值为-4;当a>2+2时,最小值为.
【题目】[2019·龙泉驿区一中]交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,且保费与上一年车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和费率浮动比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮 | |
上两个年度未发生有责任道路交通事故 | 下浮 | |
上三个以及以上年度未发生有责任道路交通事故 | 下浮 | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | ||
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮 | |
上一个年度发生有责任道路交通死亡事故 | 上浮 |
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了70辆车龄已满三年该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 13 | 7 | 20 | 14 | 6 |
(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损6000元,一辆非事故车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:
①若该销售商店内有7辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选2辆,求这2辆车恰好有一辆为事故车的概率;
②若该销售商一次性购进70辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值(结果用分数表示).