题目内容
【题目】如图,正方体ABCD-A1B1C1D1的棱长为a , M为BD1的中点,N在A1C1上,且满足|A1N|=3|NC1|.
(1)求MN的长;
(2)试判断△MNC的形状.
【答案】
(1)解:以D为原点,建立空间直角坐标系,
并设正方体边长为a,则B(a,a,0),D1(0,0,a),A1(a,0,a),C1(0,a,a),C(0,a,0),M( a, a, a),N( a, a,a),
∴|MN|= = a.
(2)解:∵ =(- a, a, a), =(- a, a,- a), =(- a, a,-a),
∴ · = a2+ a2- a2=0,∴MN⊥MC,∴△MNC是直角三角形.
【解析】本题根据题意可以选用坐标法来解题,根据向量的相关知识及空间线段长计算公式:及两向量数量积等于零得到两向量垂直,解出本题。
【考点精析】关于本题考查的棱柱的结构特征,需要了解两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形才能得出正确答案.
练习册系列答案
相关题目