题目内容

【题目】已知f(x)=logax(a>0,a≠1),设数列f(a1),f(a2),f(a3),…,f(an)…是首项为4,公差为2的等差数列.
(I)设a为常数,求证:{an}成等比数列;
(II)设bn=anf(an),数列{bn}前n项和是Sn , 当时,求Sn

【答案】证明:(I)f(an)=4+(n﹣1)×2=2n+2,
即logaan=2n+2,可得an=a2n+2
为定值.
∴{an}为等比数列.
(II)解:bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2
时,
Sn=2×23+3×24+4×25++(n+1)2n+2
2Sn=2×24+3×25+4×26++n2n+2+(n+1)2n+3
①﹣②得﹣Sn=2×23+24+25++2n+2﹣(n+1)2n+3
=﹣(n+1)2n+3=16+2n+3﹣24﹣n2n+3﹣2n+3
∴Sn=n2n+3
【解析】(I)先利用条件求出f(an)的表达式,进而求出{an}的通项公式,再用定义来证{an}是等比数列即可;
(II)先求出数列{bn}的通项公式,再对数列{bn}利用错位相减法求和即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网