题目内容

【题目】在数列{an}中,2an=an﹣1+an+1(n≥2),且a2=10,a5=﹣5,求{an}前n项和Sn的最大值为

【答案】30
【解析】解:∵在数列{an}中,2an=an﹣1+an+1(n≥2),
∴数列{an}是等差数列,
设公差为d.∵a2=10,a5=﹣5,
, 解得
∴an=15﹣5(n﹣1)=20﹣5n.
由an≥0,解得n≤4.
∴当n=3或4时,{an}前n项和Sn取得最大值15+10+5,即30,
所以答案是:30.
【考点精析】通过灵活运用等差关系的确定,掌握如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即=d ,(n≥2,n∈N)那么这个数列就叫做等差数列即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网