题目内容
【题目】如图,在四棱锥中,底而为正方形,底面,,点为棱的中点,点,分别为棱,上的动点(,与所在棱的端点不重合),且满足.
(1)证明:平面平面;
(2)当三棱锥的体积最大时,求二面角的余弦值
【答案】(1)见解析;(2)
【解析】
(1)连结交于连结,则,面,,而,面,易证,则面,可得平面平面.解法二:通过建立空间直角坐标系,找出平面平面的法向量,通过法向量互相垂直来证明.
(2)通过建立空间直角坐标系,找到两个平面法向量之间的夹角余弦,从而得到二面角的余弦值.
(1)【解法一】:(综合法)
证明:连接交于,连接.
因为底面为正方形,所以,,
又因为,所以.
由底面知,底面,
又底面,所以;
又;平面,所以平面.
在中,因为,,所以,即,
所以平面.
又平面,所以平面平面.
【解法二】
(向量法)
因为底面,,以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系.则
,,,.设,则.
,,,.
设为平面的一个法向量,则
即可取.
设为平面的一个法向量,则
即可取.
因为,所以.
所以平面平面.
(2)解:设,
由题意知,,又,
所以.
易知当三棱锥的体积最大时,,即此时,分别为棱,的中点.
以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系.
则,,,.
,,.
设是平面的法向量,则
即可取.
设是平面的法向量,则
即可取.
则.
由图知所求二面角为钝二面角,所以二面角的余弦值为.
【题目】某地区为了调查高粱的高度、粒的颜色与产量的关系,对700棵高粱进行抽样调查,得到高度频数分布表如下:
表1:红粒高粱频数分布表
农作物高度() | ||||||
频 数 | 2 | 5 | 14 | 13 | 4 | 2 |
表2:白粒高粱频数分布表
农作物高度() | ||||||
频 数 | 1 | 7 | 12 | 6 | 3 | 1 |
(1)估计这700棵高粱中红粒高粱的棵数;
(2)估计这700棵高粱中高粱高()在的概率;
(3)在样本的红粒高粱中,从高度(单位:)在中任选3棵,设表示所选3棵中高(单位:)在的棵数,求的分布列和数学期望.