题目内容
【题目】如图,在三棱柱中,平面,为边上一点,,.
(1)证明:平面平面.
(2)若,试问:是否与平面平行?若平行,求三棱锥的体积;若不平行,请说明理由.
【答案】(1)详见解析;(2)两者平行,且 .
【解析】
(1)利用平面,证得平面,得到,利用余弦定理证得,由此证得平面,从而证得平面平面.(2)取的中点,连接,通过证明四边形为平行四边形,证得,同理证得,所以平面平面,由此证得平面.利用求得三棱锥的体积.
(1)证明:因为AA1⊥平面ABC,
所以BB1⊥平面ABC,
因为,
所以AD⊥BB1.
在△ABD中,由余弦定理可得,,
则,
所以AD⊥BC,
又,
所以AD⊥平面BB1C1C,
因为,
所以平面ADB1⊥平面BB1C1C.
(2)解:A1C与平面ADB1平行.
证明如下:取B1C1的中点E,连接DE,CE,A1E,
因为BD=CD,所以DE∥AA1,且DE=AA1,
所以四边形ADEA1为平行四边形,
则A1E∥AD.
同理可证CE∥B1D.
因为,
所以平面ADB1∥平面A1CE,
又,
所以A1C∥平面ADB1.
因为AA1∥BB1,
所以,
又,且易证BD⊥平面AA1D,
所以.
练习册系列答案
相关题目