ÌâÄ¿ÄÚÈÝ
4£®ÒÑ֪ƽÃæÖ±½Ç×ø±êϵ xOyÖУ¬¹ýµã P£¨-1£¬-2£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ $\left\{\begin{array}{l}x=-1+tcos{45¡ã}\\ y=-2+tsin{45¡ã}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ ¦Ñsin¦Ètan¦È=2a£¨a£¾0£©£¬Ö±Ïß lÓëÇúÏßCÏཻÓÚ²»Í¬µÄÁ½µãM£®N£¨I£©ÇóÇúÏßCºÍÖ±Ïß lµÄÆÕͨ·½³Ì£»
£¨¢ò£©Èô|PM|=|MN|£¬ÇóʵÊýaµÄÖµ£®
·ÖÎö £¨¢ñ£©ÀûÓÃͬ½ÇµÄƽ·½¹ØϵÒÔ¼°¼«×ø±ê·½³ÌºÍÖ±½Ç×ø±êµÄ»¥»¯¹«Ê½Çó½â£»
£¨¢ò£©½áºÏÖ±ÏߵIJÎÊý·½³ÌÖвÎÊýµÄ¼¸ºÎÒâÒåºÍ¶þ´Î·½³ÌµÄΤ´ï¶¨Àí£¬Çó½â¼´¿É£®
½â´ð ½â£º£¨¢ñ£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ $\left\{\begin{array}{l}x=-1+tcos{45¡ã}\\ y=-2+tsin{45¡ã}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
¡àÖ±ÏßlµÄÆÕͨ·½³Ì£ºx-y-1=0£¬
¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ ¦Ñsin¦Ètan¦È=2a£¨a£¾0£©£¬
¡à¦Ñ2sin2¦È=2a¦Ñcos¦È£¨a£¾0£©£¬
¡àÇúÏßCµÄÆÕͨ·½³Ì£ºy2=2ax£»
£¨¢ò£©¡ßy2=2ax£»
¡àx¡Ý0£¬
ÉèÖ±ÏßlÉϵãM¡¢N¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬£¨t1£¾0£¬t2£¾0£©£¬
Ôò|PM|=t1£¬|PN|=t2£¬
¡ß|PM|=|MN|£¬
¡à|PM|=$\frac{1}{2}$|PN|£¬
¡àt2=2t1£¬
½« $\left\{\begin{array}{l}x=-1+tcos{45¡ã}\\ y=-2+tsin{45¡ã}\end{array}\right.$£¨tΪ²ÎÊý£©£¬´úÈëy2=2axµÃ
t2-2$\sqrt{2}$£¨a+2£©t+4£¨a+2£©=0£¬
¡àt1+t2=2$\sqrt{2}$£¨a+2£©£¬
t1t2=4£¨a+2£©£¬
¡ßt2=2t1£¬
¡àa=$\frac{1}{4}$£®
µãÆÀ ±¾ÌâÖص㿼²éÁËÇúÏߵIJÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯¡¢¼«×ø±ê·½³ÌºÍÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯µÈ֪ʶ£®
A£® | ?x0¡ÊR£¬x02+2x0+2£¾0 | B£® | ?x¡ÊR£¬x2+2x+2¡Ü0 | ||
C£® | ?x¡ÊR£¬x2+2x+2£¾0 | D£® | ?x¡ÊR£¬x2+2x+2¡Ý0 |
A£® | £¨1£¬3£© | B£® | [1£¬3] | C£® | £¨1£¬2] | D£® | [2£¬3] |