题目内容
【题目】已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.
(1)求圆的方程;
(2)设直线与圆相交于、两点,求实数的取值范围;
(3)在(2)的条件下,是否存在实数,使得弦的垂直平分线过点?若存在,求出实数的值;若不存在,请说明理由.
【答案】(1);(2);(3)
【解析】
试题分析:(1)利用点到直线的距离求出半径,从而求圆的方程;(2)利用圆心到直线的距离小于半径可求出实数的取值范围;(3)假设存在利用直线与圆的位置关系性质解决.
试题解析:解:(1)设圆心为,由于圆与直线相切,且半径为5,所以,且,故.圆的方程:
(2)将代入圆的方程得,
,即,且得.
(3)假设存在,由于,则,所以直线方程:.
由于垂直平分,故圆心必在上,所以,解得,
由于,故存在实数.
练习册系列答案
相关题目
【题目】下表提供了某厂节油降耗技术发行后生产甲产品过程中记录的产量 x (吨)与相应的生产能耗y(吨标准煤)的几组对应数据.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出 y 关于 x 的线性回归方程
(3)已知该厂技改前 100 吨甲产品的生产能耗为 90 吨标准煤,试根据(2)求出的线性回归方程,预测生产100 吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)