题目内容
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示
(1)求函数f(x)的解析式;
(2)分析该函数是如何通过y=sinx变换得来的?
【答案】
(1)解:由函数的图象得A=2,T=4×( )=π,
即 =π,则ω=2,
则f(x)=2sin(2x+φ),
∵f( )=2sin(2× +φ)=2,
则sin( +φ)=1,
则 +φ= +2kπ,
则φ=2kπ+ ,k∈Z,
∵|φ|< ,∴当k=0时,φ= ,
则函数f(x)=2sin(2x+ ).
(2)解:把y=sinx向左平移 个单位得到y=sin(x+ ),
然后纵坐标不变,横坐标缩短为原来的 得到y)=sin(2x+ ),
然后横坐标不变,纵坐标变为原来的2倍,得到f(x)=2sin(2x+ )
【解析】(1)根据函数的图象求出A,ω 和φ的值即可.(2)根据三角函数的图象变换关系进行变换即可.
【考点精析】本题主要考查了函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.
【题目】国家“十三五”计划,提出创新兴国,实现中国创新,某市教育局为了提高学生的创新能力,把行动落到实处,举办一次物理、化学综合创新技能大赛,某校对其甲、乙、丙、丁四位学生的物理成绩(x)和化学成绩(y)进行回归分析,求得回归直线方程为y=1.5x﹣35.由于某种原因,成绩表(如表所示)中缺失了乙的物理和化学成绩.
甲 | 乙 | 丙 | 丁 | |
物理成绩(x) | 75 | m | 80 | 85 |
化学成绩(y) | 80 | n | 85 | 95 |
综合素质 | 155 | 160 | 165 | 180 |
(1)请设法还原乙的物理成绩m和化学成绩n;
(2)在全市物理化学科技创新比赛中,由甲、乙、丙、丁四位学生组成学校代表队参赛.共举行3场比赛,每场比赛均由赛事主办方从学校代表中随机抽两人参赛,每场比赛所抽的选手中,只要有一名选手的综合素质分高于160分,就能为所在学校赢得一枚荣誉奖章.若记比赛中赢得荣誉奖章的枚数为ξ,试根据上表所提供数据,预测该校所获奖章数ξ的分布列与数学期望.