题目内容
【题目】在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点和.
(1)求的取值范围;
(2)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.
【答案】(1) (2)没有
【解析】解:(1)由已知条件知直线l的方程为
y=kx+,
代入椭圆方程得+(kx+)2=1.
整理得x2+2kx+1=0.①
直线l与椭圆有两个不同的交点P和Q等价于Δ=8k2-4=4k2-2>0,
解得k<-或k>,
即k的取值范围为∪.
(2)设P(x1,y1),Q(x2,y2),
则+=(x1+x2,y1+y2),
由方程①得x1+x2=-.②
又y1+y2=k(x1+x2)+2=,③
而A(,0),B(0,1),=(-,1),
所以+与共线等价于x1+x2=-(y1+y2).
将②③代入上式,解得k=.
由(1)知k<-或k>,故没有符合题意的常数k.
练习册系列答案
相关题目