题目内容
【题目】已知函数 f(x)=ex(ex﹣a)﹣a2x.
(1)讨论 f(x)的单调性;
(2)若f(x)≥0,求a的取值范围.
【答案】
(1)解:f(x)=ex(ex﹣a)﹣a2x=e2x﹣exa﹣a2x,
∴f′(x)=2e2x﹣aex﹣a2=(2ex+a)(ex﹣a),
①当a=0时,f′(x)>0恒成立,
∴f(x)在R上单调递增,
②当a>0时,ex﹣a>0,令f′(x)=0,解得x=lna,
当x<lna时,f′(x)<0,函数f(x)单调递减,
当x>lna时,f′(x)>0,函数f(x)单调递增,
③当a<0时,2ex+a>0,令f′(x)=0,解得x=ln(﹣ ),
当x<ln(﹣ )时,f′(x)<0,函数f(x)单调递减,
当x>ln(﹣ )时,f′(x)>0,函数f(x)单调递增,
综上所述,当a=0时,f(x)在R上单调递增,
当a>0时,f(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,
当a<0时,f(x)在(﹣∞,ln(﹣ ))上单调递减,在(ln(﹣ ),+∞)上单调递增
(2)解:①当a=0时,f(x)=e2x>0恒成立,
②当a>0时,由(1)可得f(x)min=f(lna)=﹣a2lna≥0,
∴lna≤0,
∴0<a≤1,
③当a<0时,由(1)可得f(x)min=f(ln(﹣ ))= ﹣a2ln(﹣ )≥0,
∴ln(﹣ )≤ ,
∴﹣2 ≤a<0,
综上所述a的取值范围为[﹣2 ,1]
【解析】(1)先求导,再分类讨论,根据导数和函数的单调性即可判断,(2)根据(1)的结论,分别求出函数的最小值,即可求出a的范围.
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.