题目内容
【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1,圆心在上.
(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.
【答案】(1) 或(2) 或
【解析】
(1)通过直线与直线的交点求得圆心 ,写出圆的方程.再分斜率存在和不存在两种情况,设出切线方程,,再利用圆心到直线的距离等于半径求解.
(2)设点 ,根据,求得关于点M的圆方程,再根据点 在圆C上,然后若这样的点存在,则由两圆相交求解.
(1)根据题意,圆心在直线上,也在直线上,
解得 ,所以 ,
所以圆 ,
当斜率存在时,过点 的切线方程可设为,
即,
则,
解得 或 ,
所以切线直线方程为 或 ,
当斜率不存在时,直线 不与圆相切,
综上:所求切线方程为 或,
(2)设点 ,
因为,
则 ,
即点的轨迹方程为,
又点在圆上,所以,
若存在这样的点存在,
则与有交点,
即两圆的圆心距 满足 ,
即,
解得 或
【题目】某农场所对冬季昼夜温差大小与某反季大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了2019年12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下表:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的两组数据进行检验.
(1)求选取的2组数据恰好是不相邻的2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;并预报当温差为时,种子发芽数.
附:回归直线方程:,其中;
【题目】已知是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段与轴的交点满足.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)圆是以为直径的圆,一直线与圆相切,并与椭圆交于不同的两点、,当,且满足时,求的面积的取值范围.
【题目】2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间(单位:小时)并绘制如图所示的频率分布直方图.
(1)求这200名学生每周阅读时间的样本平均数和中位数(的值精确到0.01);
(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为,的学生中抽取9名参加座谈会.
(i)你认为9个名额应该怎么分配?并说明理由;
(ii)座谈中发现9名学生中理工类专业的较多.请根据200名学生的调研数据,填写下面的列联表,并判断是否有的把握认为学生阅读时间不足(每周阅读时间不足8.5小时)与“是否理工类专业”有关?
阅读时间不足8.5小时 | 阅读时间超过8.5小时 | |
理工类专业 | 40 | 60 |
非理工类专业 |
附:().
临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
<> | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |