题目内容
【题目】已知函数在上是增函数.
求实数的值;
若函数有三个零点,求实数的取值范围.
【答案】(1);(2)
【解析】
根据分段函数的单调性,结合导数判断函数在上单调递增即可;
讨论时不满足题意,则,根据分段函数单调可知在时,已经存在两个零点,在等价为当时,有且只有一个零点,利用参变分离法结合图象进行求解即可。
解:当时,是增函数,且,
故当时,为增函数,即恒成立,
当时,函数的导数恒成立,
当时,,此时相应恒成立,即恒成立,即恒成立,
当时,,此时相应恒成立,即恒成立,即恒成立,
则,即.
若,则在上是增函数,此时最多有一个零点,不可能有三个零点,则不满足条件.
故,
当时,有一个零点,
当时,,故0也是故的一个零点,
故当时,有且只有一个零点,即有且只有一个解,
即,得,,
则,在时有且只有一个根,
即与函数,在时有且只有一个交点,
,
由得,即得,得,此时函数递增,
由得,即得,得,此时函数递减,
即当时,函数取得极小值,此时极小值为
,
,
作出的图象如图,
要使与函数,在时有且只有一个交点,
则或,
即实数的取值范围是.
【题目】某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调査.经统计这100位居民的网购消费金额均在区间内,按,,,,,分成6组,其频率分布直方图如图所示.
(1)估计该社区居民最近一年来网购消费金额的中位数;
(2)将网购消费金额在20千元以上者称为“网购迷”,补全下面的列联表,并判断有多大把握认为“网购迷与性别有关系”;
男 | 女 | 合计 | |
网购迷 | 20 | ||
非网购迷 | 45 | ||
合计 | 100 |
(3)调査显示,甲、乙两人每次网购采用的支付方式相互独立,两人网购时间与次数也互不. 影响.统计最近一年来两人网购的总次数与支付方式,所得数据如下表所示:
网购总次数 | 支付宝支付次数 | 银行卡支付次数 | 微信支付次数 | |
甲 | 80 | 40 | 16 | 24 |
乙 | 90 | 60 | 18 | 12 |
将频率视为概率,若甲、乙两人在下周内各自网购2次,记两人采用支付宝支付的次数之和为,求的数学期望.
附:观测值公式:
临界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】从一批草莓中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) | ||||
须数(个) | 10 | 5 | 20 | 15 |
(1)根据频数分布表计算草莓的重量在的频率;
(2)用分层抽样的方法从重量在和的草莓中共抽取5个,其中重量在的有几个?
(3)从(2)中抽出的5个草莓中任取2个,求重量在和中各有1个的概率.