题目内容

(本小题满分12分)
如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点, PD⊥平面ABCD,且PD=AD=,CD=1.
(Ⅰ)证明:MN∥平面PCD;
(Ⅱ)证明:MC⊥BD;
(Ⅲ)求二面角A—PB—D的余弦值.

(1)略
(2)略
(3)
解:(Ⅰ)证明:取AD中点E,连接ME,NE,
由已知M,N分别是PA,BC的中点, 
∴ME∥PD,NE∥CD
又ME,NE平面MNE,MENE=E,
所以,平面MNE∥平面PCD,又MN平面MNE
所以,MN∥平面PCD           ……………4分
(Ⅱ)因为PD⊥平面ABCD,所以PD⊥DA,PD⊥DC,
在矩形ABCD中,AD⊥DC,
如图,以D为坐标原点,射线DA,DC,DP分别为
轴、轴、轴正半轴建立空间直角坐标系.
则D(0,0,0),A(,0,0),
B(,1,0),(0,1,0), P(0,0,)      
所以,0,),  
·=0,所以MC⊥BD        ……………8分
(Ⅲ)因为ME∥PD,所以ME⊥平面ABCD,ME⊥BD,又BD⊥MC,
所以BD⊥平面MCE, 所以CE⊥BD,又CE⊥PD,所以CE⊥平面PBD,
由已知,所以平面PBD的法向量
M为等腰直角三角形PAD斜边中点,所以DM⊥PA,
又CD⊥平面PAD,AB∥CD,所以AB⊥平面PAD,AB⊥DM,所以DM⊥平面PAB,
所以平面PAB的法向量(-,0,),设二面角A—PB—D的平面角为θ,
.   所以,二面角A—PB—D的余弦值为.     ……………12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网