题目内容
【题目】某校进入高中数学竞赛复赛的学生中,高一年级有8人,高二年级有16人,高三年级有32人,现釆用分层抽样的方法从这些学生中抽取7人进行釆访.
(1)求应从各年级分别抽取的人数;
(2)若从抽取的7人中再随机抽取2人做进一步了解(注高一学生记为,高二学生记为,高三学生记为,
①列出所有可能的抽取结果;
②求抽取的2人均为高三年级学生的概率.
【答案】(1)高一1人,高二2人,高三4人(2)①具体抽取结果见解析;②.
【解析】
(1)根据分层抽样等比例抽取的性质,即可列式计算;
(2)①根据题意,列举即可;
②计算出所有基本事件的个数,再找出满足题意的事件个数,用古典概型的概率计算公式即可求得.
(1)高一:;
高二:;
高三:
所以抽取高一1人,高二2人,高三4人.
(2)由(1)知高一1人记为,高二2人记为,高三4人记为,
①从中抽取两人,所有可能的结果为:
,
共21种.
②由①知,共有21种情况,抽取的2人均为高三年级学生有
,共6种,
所以抽取的2人均为高三年级学生的概率.
【题目】已知某校一间办公室有四位老师甲、乙、丙、丁.在某天的某个时段,他们每人各做一项工作,一人在查资料,一人在写教案,一人在批改作业,另一人在打印材料.
若下面4个说法都是正确的:
①甲不在查资料,也不在写教案; ②乙不在打印材料,也不在查资料;
③丙不在批改作业,也不在打印材料; ④丁不在写教案,也不在查资料.
此外还可确定:如果甲不在打印材料,那么丙不在查资料.根据以上信息可以判断
A.甲在打印材料 | B.乙在批改作业 | C.丙在写教案 | D.丁在打印材料 |
【题目】据历史记载,美日在中途岛(Midway)海战前,美方截获了日方密码电报,据美方已破译的密码得知,日方将向某岛进行军事活动,但关键含有地点的部分却被日方换成了另一种密码.经专家研究,估计是一种密匙密码,且密匙为3位.所谓密匙密码是指:将一段英文字母的明文(未加密前原文)经过对某一组数字(即密匙)的变换,改变成了另一组英文字母成为密文(加密后的文字)例如:明文: (不计空格,不计大小写)在密匙为:1 9 2的条件下,变换过程如下图所示:
s | t | u | d | e | n | t |
1 | 9 | 2 | 1 | 9 | 2 | 1 |
t | c | w | e | n | p | u |
则密文为:,试根据上面信息回答下面问题:
(1)在密匙为111的条件下,填写下表,并写出密文;
s | t | u | d | e | n | t |
密文____________________.
(2)若请填写下表,并写出密匙;
s | t | u | d | e | n | t |
密匙为_____________.
(3)若下面即是那段包含地点(Midway)的破译不出的密文:,且此段密文也是3位密匙加密,试填写下表,写出密匙,并将此段密文翻译成明文.(不必证明,写出明文即可)
c | w | b | c | f | s | o | l | l | y | d | g |
密匙为___________,明文为_________.