题目内容
【题目】经市场调查,某种商品在进价基础上每涨价1元,其销售量就减少10个,已知这种商品进价为40元/个,若按50元一个售出时能卖出500个.
(1)请写出售价x()元与利润y元之间的函数关系式;
(2)试计算当售价定为多少元时,获得的利润最大,并求出最大利润.
【答案】(1)(2)售价为70元时,利润y元最大为9000元.
【解析】
(1)可得该商品每个涨价()元,其销售量将减少个.即有利润;(2)利用函数的解析式,结合二次函数的性质运用配方法,即可得到最大值及x的值.
解:(1)由售价为x元,可得该商品每个涨价元,
其销售量将减少个.
即有利润
=
=
(2
=,
当时,y取得最大值,且为9000元.
故每个商品的售价为70元能够使得利润y元最大,利润的最大值为9000元.
练习册系列答案
相关题目
【题目】为了解学生喜欢校内、校外开展活动的情况,某中学一课外活动小组在学校高一年级进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按,,,,分成五组,绘制的频率分布直方图如图所示,若将不低于60分的称为类学生,低于60分的称为类学生.
(1)根据已知条件完成下面列联表,能否在犯错误的概率不超过的前提下认为性别与是否为类学生有关系?
类 | 类 | 合计 | |
男 | 110 | ||
女 | 50 | ||
合计 |
(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中类学生的人数为,若每次抽取的结果是相互独立的,求的分布列、期望和方差.
参考公式:,其中.
参考临界值:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |