题目内容
【题目】已知某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:
(1)画出散点图;
(2)根据如下的参考公式与参考数据,求利润额y与销售额x之间的线性回归方程;
(3)若该公司还有一个零售店某月销售额为10千万元,试估计它的利润额是多少?
(参考公式:,其中:)
【答案】(1)散点图见解析;(2);(3).
【解析】
试题分析:(1)根据所给的表格,得到五对数据,在坐标系中画出对应的点,得到散点图;(2)根据所给的数据,作出横标和纵标的平均数,利用最小二乘法作出线性回归方程的系数,代入样本中心点求出的值,得到线性回归方程;(3)根据所给的自变量的值,代入线性回归方程,求出对应的的值.
试题解析:(1)散点图
(2)由已知数据计算得:
,
则线性回归方程为
(3)将x=10代入线性回归方程中得到(千万元)
【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(12分)
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
经计算得 = =9.97,s= = ≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数 作为μ的估计值 ,用样本标准差s作为σ的估计值 ,利用估计值判断是否需对当天的生产过程进行检查?剔除( ﹣3 +3 )之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592, ≈0.09.