题目内容
19.在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.(I)求角A的大小;
(Ⅱ)若△ABC的面积S=5$\sqrt{3}$,b=5,求sinBsinC的值.
分析 (I)利用两角和与差的三角函数以及二倍角公式化简3cosBcosC+2=3sinBsinC+2cos2A,得到cosA的值,即可求解A.
(II)通过三角形的面积求出b、c的值,利用余弦定理以及正弦定理求解即可.
解答 解:(I)由3cosBcosC+2=3sinBsinC+2cos2A,得
2cos2A+3cosA-2=0,-----(2分)
即(2cosA-1)(cosA+2)=0.
解得cosA=$\frac{1}{2}$或cosA=-2(舍去).-----(4分)
因为0<A<π,所以A=$\frac{π}{3}$.----(6分)
(II)由S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bc•$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$bc=5$\sqrt{3}$,得bc=20.
又b=5,所以c=4.-----(8分)
由余弦定理,得a2=b2+c2-2bccosA=25+16-20=21,故a=$\sqrt{21}$.---(10分)
又由正弦定理,得sinBsinC=$\frac{b}{a}$sinA•$\frac{c}{a}$sinA=$\frac{bc}{{a}^{2}}$•sin2A=$\frac{20}{21}$×$\frac{3}{4}$=$\frac{5}{7}$.----(12分)
点评 本题考查正弦定理以及余弦定理的应用,两角和与差的三角函数,考查转化思想以及计算能力.
练习册系列答案
相关题目
7.为了判断高中二年级学生是否喜欢足球运动与性别的关系,现随机抽取50名学生,得到2×2列联表:
附表:
(参考公式k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(n=a+b+c+d)
则有99.5%以上的把握认为“喜欢足球与性别有关”.
喜欢 | 不喜欢 | 总计 | |
男 | 15 | 10 | 25 |
女 | 5 | 20 | 25 |
总计 | 20 | 30 | 50 |
P(K2≥k0) | 0.010 | 0.005 | 0.001 |
k0 | 6.635 | 7.879 | 10.828 |
则有99.5%以上的把握认为“喜欢足球与性别有关”.
4.已知$\overrightarrow{a}$=(x,2),$\overrightarrow{b}$=(2,-1),且 $\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=( )
A. | $\sqrt{5}$ | B. | $\sqrt{10}$ | C. | $2\sqrt{5}$ | D. | 10 |
11.边长为1的正三角形ABC内一点M(包括边界)满足:$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{CA}$+λ$\overrightarrow{CB}$(λ∈R),则$\overrightarrow{CA}$•$\overrightarrow{CM}$的取值范围为( )
A. | [$\frac{1}{3}$,$\frac{1}{2}$] | B. | [$\frac{1}{3}$,$\frac{2}{3}$] | C. | [$\frac{1}{2}$,$\frac{2}{3}$] | D. | [$\frac{1}{3}$,$\frac{5}{6}$] |