题目内容

11.边长为1的正三角形ABC内一点M(包括边界)满足:$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{CA}$+λ$\overrightarrow{CB}$(λ∈R),则$\overrightarrow{CA}$•$\overrightarrow{CM}$的取值范围为(  )
A.[$\frac{1}{3}$,$\frac{1}{2}$]B.[$\frac{1}{3}$,$\frac{2}{3}$]C.[$\frac{1}{2}$,$\frac{2}{3}$]D.[$\frac{1}{3}$,$\frac{5}{6}$]

分析 通过已知M在三角形内或者边界,得到λ的范围,然后利用向量的数量积解答.

解答 解:因为点M在△ABC一点,(包括边界)满足:$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{CA}$+λ$\overrightarrow{CB}$(λ∈R),
所以0≤λ≤$\frac{2}{3}$,所以$\overrightarrow{CA}$•$\overrightarrow{CM}$=($\frac{1}{3}$$\overrightarrow{CA}$+λ$\overrightarrow{CB}$)•$\overrightarrow{CA}$=$\frac{1}{3}$+$λ\overrightarrow{CA}•\overrightarrow{CB}$=$\frac{1}{3}+\frac{λ}{2}$,
所以$\overrightarrow{CA}$•$\overrightarrow{CM}$$∈[\frac{1}{3},\frac{2}{3}]$;
故选B.

点评 本题考查了向量的三角形法则以及数量积运算,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网