题目内容
【题目】已知{an}是等差数列,{bn}是各项均为正数的等比数列,且b1=a1=1,b3=a4,b1+b2+b3=a3+a4.
(1)求数列{an},{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项和Tn.
【答案】(1) ;(2)Tn=(n-1)·2n+1.
【解析】试题分析:
(1)设数列的公差为, 的公比为,运用等差数列和等比数列的通项公式,可得的方程组,解方程可得公差和公比,即可得到所求通项公式;
(2)求得,运用乘公比错位相减法,结合等比数列的求和公式,化简整理即可得到所求的和.
试题解析:
(1)设数列{an}的公差为d,{bn}的公比为q,
依题意得解得d=1,q=2.
所以an=1+(n-1)×1=n,bn=1×2n-1=2n-1.
(2)由(1)知cn=anbn=n·2n-1,则
Tn=1·20+2·21+3·22+…+n·2n-1,①
2Tn=2·20+2·22+…+(n-1)·2n-1+n·2n,②
①-②得:-Tn=1+21+22+…+2n-1-n·2n
=-n·2n=(1-n)·2n-1,
所以Tn=(n-1)·2n+1.
【题目】
近年来,随着双十一、双十二等网络活动的风靡,各大网商都想出了一系列的降价方案,以此来提高自己的产品利润. 已知在2016年双十一某网商的活动中,某店家采取了两种优惠方案以供选择:
方案一:购物满400元以上的,超出400元的部分只需支出超出部分的x%;
方案二:购物满400元以上的,可以参加电子抽奖活动,即从1,2,3,4,5,6这6张卡牌中任取2张,将得到的数字相加,所得结果与享受优惠如下:
数字和 | [3,4] | [5,7] | [8,9] | [10,11] |
实际付款 | 原价 | 9折 | 8折 | 5折 |
(Ⅰ)若某顾客消费了800元,且选择方案二,求该顾客只需支付640元的概率;
(Ⅱ)若某顾客购物金额为500元,她选择了方案二后,得到的数字之和为6,此时她发现使用方案一、二最后支付的金额相同,求x的值.